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Received 26 January 1981 

Abstract. It is shown that particles constrained to move in a region where the Riemann 
tensor vanishes may nonetheless exhibit physical effects arising from non-zero curvature in 
a region from which they are excluded. This is a gravitational analogue of the Aharonov- 
Bohm effect. 

The Aharonov-Bohm effect in electrodynamics can be interpreted as an illustration of 
non-locality in quantum theory. This effect, which was predicted theoretically by 
Aharonov and Bohm (1959) and confirmed experimentally by Chambers (1960), arises 
when a coherent beam of electrons is directed around either side of a solenoid within 
which a non-zero magnetic field is present. If the electron beams are allowed to 
interfere, it is found that the phase difference depends upon the magnetic flux passing 
through the surface bounded by the beam paths. This is still true even if the electrons 
are excluded from the region where the magnetic field is non-zero; hence the inter- 
pretation of non-locality. This effect can equally well be interpreted as illustrating the 
need to couple the electron to the electromagnetic vector potential. The phaseshift is 
proportional to the line integral of the vector potential around the path of the electron 
beam which by Stokes’ theorem is equal to the enclosed magnetic flux. The vector 
potential in the region traversed by the electrons is pure gauge in the sense that in a local 
neighbourhood it is possible to find a gauge in which the vector potential is identically 
zero. However, there does not exist any gauge choice which makes A vanish every- 
where along the path. 

The question naturally arises as to whether an analogous effect exists in the theory of 
gravitation. The metric g,, and Riemann curvature tensor R play roles analogous to 
those of the potentials and field strengths respectively in electromagnetism. A genuine 
gravitational field is associated with a non-vanishing Riemann tensor, whereas a metric 
whose Riemann tensor vanishes may be transformed to the Minkowski metric by a 
coordinate transformation. However, the Aharonov-Bohm effect suggests that parti- 
cles constrained to move in a region where the Riemann tensor vanishes may nonethe- 
less exhibit physical effects arising from non-zero curvature in a region from which they 
are excluded. It is the purpose of this paper to show that this is indeed the case. 

The Sagnac effect in general relativity has been investigated by Ashtekar and 
Magnon (1975), who point out that the gravitational field of a rotating mass distribution 
produces effects analogous to the Aharanov-Bohm effect. Their work has been 
extended by Anandan (1977). In the present paper, we shall be concerned with a 
somewhat different gravitational analogue to the Aharonov-Bohm effect which can 
arise even for a static mass distribution. A particular case was recently considered by 
Vilenkin (1981) in the context of a string model. 
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Let us consider a space-time associated with a tube-like distribution of matter. We 
assume the existence of two Killing vector fields, t’* which is time-like and z’* which is 
space-like and generates translations along the direction of the tube. Thus the matter 
distribution is stationary and uniform along z’*. We also assume that the space is 
asymptotically flat in a direction perpendicular to z’* (i.e. at large distances from the 
tube). Let S denote a 2-surface which is orthogonal to both P and z p .  Because of the 
time and spatial translational symmetry, all such 2-surfaces are equivalent. We are 
assuming that the Riemann tensor approaches zero as one moves in S in directions away 
from the tube. Let C be a closed curve in S which lies entirely in the asymptotically flat 
region but which encloses the tube where the curvature is non-zero. If one transports a 
vector parallel to C around the closed curve, it will, in general, not return to itself but 
will undergo a rotation by an angle cr which is expressible as the area integral of the 
Gaussian curvature K over So, the subsurface of S enclosed by C (Stoker 1969): 

cr = Is, K da. 

This is one form of the Gauss--Bonnet theorem. Thus even though the curvature may 
vanish along C, the effects of non-zero curvature in the interior region are still felt. 
Geometrically, this means that S is asymptotically a conical surface rather than a plane. 
Physically, it means that particles may be gravitationally deflected by the tube without 
ever entering a region of non-zero curvature. 

To understand this effect more explicitly, let us consider a static space-time 
described by the metric 

d s 2 =  -D2(r, 19) d t 2 + A 2 ( r ,  0)  dr2+B2(r ,  e )  d B Z + E 2 ( r ,  e )  dz2 (2) 
which is translationally invariant in the t and z directions. (This form of the metric 
contains more functions than are essential; for example, by a suitable choice of r and 8 
one could require that A = B.)  The 2-surface S is a surface defined by t and z equal 
constants and has the metric 

d s i  = A2(r, e )  dr2+ B2(r, 6 )  de2. (3) 
We now assume that the coordinates can be chosen so that A += 1 and B - r as r + 0 and 
that A + 1 and B + br as r + CO. Furthermore, for all values of r, the points 8 and 6 + 2.rr 
are identified. Thus, in a neighbourhood of the origin, S is flat (i.e. free of conical 
singularities) and for large r it becomes a cone. 

The Gaussian curvature of S may be expressed in terms of A and B and their partial 
derivatives: 

K = A-3B-3(A2A,,J?,e + BZA, ,B, ,  -AB2B, ,  -A2BA,ee )  

= -A-%’ [(%),e  +(%),I (4) 

If we integrate K over S,  using the above asymptotic forms of A and B, we find that 

( 5 )  

where Jg = AB. This is equivalent to (1) with a = 2 ~ ( l -  b) .  The surface S is, at large r, 
a cone with conical angle A = rb .  The conical angle of a cone is here defined as the angle 
subtended at the apex (so A = T for a plane). 
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The Gaussian curvature K of S may be readily expressed in terms of the Riemann 
tensor (4)REYP of the four-dimensional space-time within which S is embedded, First 
consider a 3-surface Z which is orthogonal to t’. The Riemann tensor (3)Rjkl of Z is 
expressible in terms of (4)REuP and the extrinsic curvature Kii of Z by means of the 
Gauss-Codazzi equations. However, because t” is a Killing vector, Z has zero extrinsic 
curvature. This follows because (Misner et a1 1973) 

( 6 )  K.. = -t. . 
1:l 

and is symmetric Kji = Kii. Killing’s equation requires that tiii = or Kii = -Kii and 
hence Kii=O. In this case (3)Rjkl is obtained by projecting (4 )RLp  into Z, or in 
coordinates where Z is defined by t = constant, 

(7) (3)Ri - (4)Ri 
Ikl - I k l .  

Similarly, one obtains that the Riemann tensor of the two-dimensional space S is 

(8) (2)Ri - (4)Rf 
Ikl - I k l .  

The Gaussian curvature is one half of the scalar curvature (2 )R  of S,  and hence 

where (2)g j i  is the metric on S.  This result, combined with equation (5), enables us to find 
the conical angle in terms of the Riemann tensor of the four-dimensional space-time. 

In general it does not seem to be possible to express K in terms of the four- 
dimensional Ricci tensor, and hence of the energy-momentum tensor of the source, 
TwY. However, in the case that the gravitational field is sufficiently weak that the 
linearised theory may be applied, such an expression can be given. Let the metric be 

g,, = q,,, + h,, where q,, = diag(-1, 1 ,1 ,  1) 

and let 

(10) 

K y , ,  = 0 (11) 

OK,,, = - 1 6 ? ~ T , ,  (12) 

1 - 
h,, = h,, - 2qwuh 

with h = h,“. With the gauge condition 

the linearised field equations become 

and the Riemann tensor is 

(13) 
( 4 )  1 RDLLL~u = Z(hau,fiP + hwP,au - heu,DLp - hap,,u). 

(Our notation is that of Misner et a1 (1973) with G = c = 1.) As before, the source is 
assumed to be independent of the x o  and x 3  coordinates. Then 

(14) 1 K = (4)R1212 = dh12,21+ h21,21- h22,11.- h11.22). 

Using (11) and (12), this may be rewritten as 

K = 8 ~ (  TI  1 + T22 - 1T) 

where T = T:. This inserted into (5) yields b in terms of the source. Of particular 
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interest is the case where p = Too is the only non-zero component of Twv. Then we have 

l -b=47r  pd2X. I 
Thus for a dust source, the conical angle is given in terms of the mass per unit length of 
the tube. 

Let us now consider the physical consequences of the fact that S is asymptotically a 
cone rather than a plane. One consequence follows immediately from (1). If a spinning 
particle travels around a closed curve in such a way that the spin vector undergoes 
parallel transport, the spin vector will be rotated by an angle a upon return to the 
starting point. This will effect the interference properties of a coherent beam of 
particles such as neutrons. (For a discussion of experiments using the interference 
properties of neutrons to measure gravitational and rotational effects, see Anandan 
(1977) and Greenberger and Overhauser (1979).) Neutrons which traverse a region of 
space where the curvature is identically zero are nonetheless capable of detecting the 
effects of curvature in other regions of space-time. 

There is a second type of interference effect by means of which one could detect the 
region of non-zero curvature. Consider a circular loop of proper radius R which is 
centred about a region containing a source, with locally flat space outside of the source. 
If R is much larger than the dimensions of the source, then the circumference of the 
circle is 27rbR. If one were to vary the characteristics of the source in such a way that b 
changes, but require that R remains fixed, the proper length of such a circular path 
would change. Hence, a coherent beam of light or other particles which travels around 
this path could be made to exhibit interference which reflects this varying path length. 

In the case that the space-time is identically flat (rather than asymptotically flat) 
outside of the source, one can relate the conical angle to the deflection of a beam of 
particles (Vilenkin 1981). The metric in the flat region can be written as 

d s 2 =  -dt2+dr2+b2r2dq52+dz2 (17) 

d s 2 =  -d t2+dr2+r2  d4I2+dz2 (18) 

where 0 < q5 < 2 r ,  which is equivalent to 

with 0 s 4’ < 27rb. The path of a photon or other free particle moving tangentially is a 
straight line in the latter coordinates and sweeps out an angle Aq5’ = r or 

A 4  = 7rb-’. (19) 

84 = .ir(b-’ - 1) 

Hence the particle undergoes a deflection of 

(20) 
due to the gravitational effects of the tube. Note that the deflection is independent of 
the impact parameter or of whether the particle travels along a time-like or null 
geodesic. In the case where the space-time is not identically flat along the particle’s 
path, there is still a deflection but it is no longer given by (20). 

The light deflection (20) can be transformed away: indeed, the metric (18) can be 
brought to the Galilean form 

ds2 = -dt2 +dX2 + d y 2 + d t 2  

in any space-time region which does not contain closed loops enveloping the cylindrical 
source. However, such a transformation cannot be performed in the whole space-time, 
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Light beams propagating on different sides of the source can intersect, and thus the 
relative deflection of two beams cannot, in general, be transformed away. The situation 
here is analogous to the electromagnetic Aharonov-Bohm effect, where the vector 
potential can be transformed to zero in any region containing no closed loops enclosing 
the solenoid. 

A difference between the electromagnetic Aharonov-Bohm effect and the gravita- 
tional analogue discussed here is that the former is a quantum interference effect, 
whereas the latter is classical (i.e. independent of ti). This is attributable to the fact that 
the classical equations of motion in the electromagnetic case involve only the field 
strength FFy, so there can be no classical deflection in a region where the fields are zero. 
On the other hand, the equation of motion for a particle in a gravitational field, the 
geodesic equation, involves the metric rather than the Riemann tensor; consequently 
non-local effects of curvature can arise at the classical level. 

Examples of space-times which are flat outside of the source include the vacuum 
strings (Vilenkin 1981). It is necessary for the source to exhibit either negative pressure 
or negative energy density, which do not occur in most familiar types of matter but do 
arise in both classical and quantum field theories. 
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